THE STRUCTURES OF PENTOPYRANINE A AND C. TWO CYTOSINE NUCLEOSIDES WITH α-L-CONFIGURATION

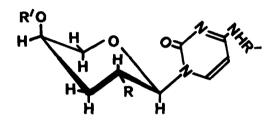
Haruo Seto", Noboru Ötake and Hiroshi Yonehara

Institute of Applied Microbiology, The University of Tokyo, Tokyo

(Received in Japan 8 August 1972; received in UK for publication 21 August 1972)

In continuing the search for intermediates lying on the pathway of blasticidin S biosynthesis¹⁾, hitherto unknown cytosine nucleoside complex comprising from six components has been isolated²⁾ from the fermentation broth of *Streptomyces griseochromogenes*. This communication concerns with the structural elucidation of the two main components, designated pentopyranine A and C.

Pentopyramine C I, C9H1304N3(M⁺: m/e 227) mp. 143-145°C, $[\alpha]_D^{21}+20^\circ$ (c 1.2, H20) is a weak basic compound with pKa 4.2 and shows UV absorption spectrum $[\lambda_{max}$ 278nm (E=12,200) in 0.1N HCl, 270nm (E=8,450) in 0.1N NaOH] almost identical with that of cytidine. These evidences together with the nmr spectral data $[\delta_{DSS}^{D_2O} 6.45$ and 8.05 (each 1H, d, J=8Hz)] indicate that 1-substituted cytosine is the chromophore of I. The presence of a sugar moiety in I is shown by the IR spectrum $(\nu_{max}^{nujol} 3500-3200, 1140 \text{ cm}^{-1})$.


<u>I</u> was acylated to give triacetate <u>II</u>, $C_1 ext{sH}_1 ext{907N}_3(M^+: m/e 353)$, v_{max}^{nujol} 1740, 1670, 1560, 1230 cm⁻¹, mp. 203°C, δ_{TMS}^{CDC13} 1.95(equatorial <u>CH3</u>COO-), 2.15(axial <u>CH3</u>COO-), ³⁾ 2.27(<u>CH3</u>CON-), 7.50 and 7.80 (each 1H, d, J=7.5Hz) and tribenzoate <u>III</u>, $C_{30}H_2 ext{sO7N}_3(M^+: m/e 537)$, v_{max}^{CHC13} 1720, 1675, 1560, 1270, 1120 cm⁻¹, $\delta_{TMS}^{CDC13} \sim 7.4$ (2 x C6H5COO-) and ~ 7.9 (C6H5CON-), with acetic anhydride/pyridine and benzoyl chloride/pyridine, respectively. Since the amino group of cytosine nucleus in <u>I</u> was acylated under these conditions, there should exist two hydroxy groups in the sugar moiety of <u>I</u>.

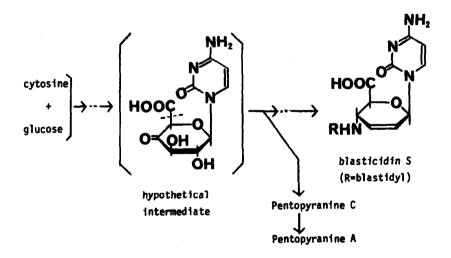
The nmr spectrum of \underline{I} (see table) shows an anomeric proton, a methylene and four illresolved hydrogens attached to carbon bearing oxygen function. On benzoylation of \underline{I} , two of the four hydrogens shifted to low field by 1.2-1.3 ppm and the rest remained without considerable changes in the chemical shift. (<u>III</u>, see table) This means that the latter two hydrogens bind to the carbon adjacent to the sugar ring oxygen and that the sugar takes pyranose form. The steric relation between H₁' and H₂' is determined to be *trans* diaxial based on the large coupling constants (J₁', <u>z</u>=9.2Hz in <u>I</u>, 9.5 in <u>III</u>), and H₂' further coupled to the

No. 38

methylene protons. Small J4, sa and J3a, " clearly indicate that H4' is in equatorial position. It follows from these facts that <u>I</u> is $1-\alpha-(3'-deoxy-L-arabinopyranosyl)-cytosine or its mirror$ image, 1-α-(3'-deoxy-D-arabinopyranosyl)-cytosine.

The absolute configuration of the sugar was determined to be L by comparing its 2,4-dinitrophenylosazone IV, C17H16010N8 mp. 257-258°C (dec.) with an authentic sample of 3-deoxy-D-pentosone 2,4-dinitrophenylosazone⁴⁾. Whereas both compounds were completely identical in mps. and IR spectra, they showed opposite sign in optical rotation ($[\alpha]_D^{21}$ authentic: +326°, c 0.218, lit 4, <u>IV</u>: -318° c 0.204, dioxane). Therefore, the structure of <u>I</u> is established as 1- α -(3'-deoxy-Larabinopyranosyl)-cytosine as shown below (R=OH, R'=H).

<u>I</u> (R=OH, R'=H)			in D ₂ 0/DC1			
5.55	4.2	2.40	1.94	4.2	4.08	3.90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	-	<u>,</u> 11.	3		0.6	
*						


VI (R=H, R'=CH₃CO) in CDC1₃

5.84 1.7 - 2.3 4.87 4.22 3.8 H_{1a} H_{2e} H_{2a} H_{3e} H_{3a} H_{4e} H_{5e} H_{5a} 1.3 * 12.0 10.0 4.87 4.22 3.87 * Couplings between these protons (smaller than 2 Hz) were confirmed by spin decoupling experiments.

Pentopyranine A \underline{V} , C₉H₁₃O₃N₃(M⁺: m/e 211), mp. 258°C (dec.), $[\alpha]_D^{21}O^\circ$ (c 0.75, H₂O) λ_{max} 278nm(ε =13,100) in 0.1N HCl 270nm(ε =8,850) in 0.1N NaOH, pKa 4.2, ν_{max}^{nujol} 3380, 3200, 1208, 1110 cm⁻¹, is very similar to I in physicochemical properties, but instead of triacetate, it gave diacetate <u>VI</u>, C₁₃H₁₇O₅N₃(M⁺: m/e 295), mp. 201-202.5°C, ν_{max}^{nujol} 1710, 1670-1630, 1570, 1240 cm⁻¹ $\delta_{TMS}^{CDC1_3}$ 2.13(axial <u>CH₃COO-</u>), 2.28(<u>CH₃CON-</sub>) on acetylation with acetic anhydride/pyridine.</u>

In the nmr spectrum of \underline{VI} , an anomeric proton appeared as a doublet of doublets $(J_{1,2}e=10.0, J_{1,2}e=1.3Hz)$ with negligible acyl shift. Through the comparison of the nmr spectra, the molecular formulae as well as the results of the acetylation between <u>I</u> and <u>V</u>, it becomes evident that one hydroxy group in <u>I</u> has been replaced by a hydrogen to give 2', 3'-dideoxy-pentopyranose taking Cl(L) conformation. The L configuration of the sugar was determined by comparing its 2,4-dinitrophenyl-hydrazone <u>VII</u>, C₁₁H₁₄O₆N₄(M⁺: m/e 298), mp. 128-135°C, $[\alpha]_D^{21}$ +2.7° (c 1.0, dioxane) with that of authentic 2,3-dideoxy-D-pentose, $[\alpha]_D^{20}$ -2.6° (c 1.0, dioxane) which was synthesized by the oxidation of 1,2-0-isopropylidene-(s)-pentane-1,2,5-triol⁵ followed by acid treatment. Thus, the structure of <u>V</u> is 1- α -(2',3'-dideoxy-L-arabinopyranosyl)-cytosine.

Although various kinds of (deoxy)nucleosides and (deoxy)nucleotides have been isolated from nature as free forms⁶ and/or as components of DNA and RNA⁷, most of these possess β -D configuration. Therefore, to the best of our knowledge, pentopyranine A and C are the first naturally occurring nucleosides with <u>a-L configuration</u> and are presumed to be shunt pathway products of blasticidin S biosynthesis as shown below.

It may be of interest to note that an antibiotic cordycepin (3'-deoxyadenosine)⁸⁾ had been isolated from the fermentation broth of *Cordycepts militaris* as a sole 3'-deoxy nucleoside.

<u>Acknowledgement</u> The authors are indebted to Associate Professor H. Kato (Dept. of Agricultural Chemistry, the University of Tokyo) for supplying the sample of 3-deoxy-D-pentosone 2,4-dinitrophenylosazone.

References

*Author to whom inquiries should be adressed.

- 1) H. Seto, N. Otake and H. Yonehara; Agr. Biol. Chem. 32, 1299 (1968)
- 2) Isolation procedures and biological activities of pentopyranine A and C as well as the structures of pentopyranine B, D, E and F will be published elsewhere.
- 3) R. U. Lemieux, R. K. Kullnig, H. J. Bernstein and W. G. Schneider; J. Am. Chem. Soc. 80, 6098 (1958)
- 4) H. Kato; Agr. Biol. Chem. 26, 187 (1962)
- 5) H. Katsura; Nippon Kagaku Zasshi 77, 1789 (1956)
- 6) R. J. Suhadolnik; *Mucleoside Antibiotics*, Wiley-Interscience, New York (1970)
- 7) R. H. Hall; The Modified Nucleosides in Nucleic Acids, Columbia University Press, New York (1971)
- 8) H. Klenow; Biochim. Biophys. Acta 76, 347 (1963)